Wie Nervenzellen ihren Bestimmungsort finden

Nervenzellen mit dem Unc5-Rezeptor senden ihre Axone in einer Zellkultur in alle Richtungen aus. Die Fortsätze vermeiden dabei weitgehend parallel zueinander angeordnete Bahnen, die das Leitprotein FLRT3 enthalten (rot). © Seiradake et al, Neuron 2014

Nervenzellen mit dem Unc5-Rezeptor senden ihre Axone in einer Zellkultur in alle Richtungen aus. Die Fortsätze vermeiden dabei weitgehend parallel zueinander angeordnete Bahnen, die das Leitprotein FLRT3 enthalten (rot).
© Seiradake et al, Neuron 2014

Während der Entwicklung des Gehirns müssen die Vorläufer von Nervenzellen manchmal weite Strecken von ihrem Entstehungs- bis zu ihrem Ursprungsort zurücklegen. Proteine, wie die FLRTs (gesprochen: Flirts), dienen dabei als Leitmoleküle. Forscher haben nun herausgefunden, dass FLRT-Proteine auf der Oberfläche der Vorläuferzellen je nach Bindungspartner abstoßende und anziehend Signale auslösen können. Sie besitzen daher gegenläufige Wirkungen auf die Zellwanderung – welcher Effekt überwiegt, hängt von der jeweiligen Phase der Zellwanderung ab. Die Wissenschaftler entschlüsselten außerdem die Oberflächenstrukturen, die für die zwei Funktionen der FLRTs notwendig sind. Aber die Bedeutung der FLRTs beschränkt sich nicht nur auf die Zellwanderung von Nervenzellen. Sie wirken vielmehr auch in den Wänden von Blutgefäßen anziehend und abstoßend und spielen deshalb auch für die Entwicklung anderer Gewebe eine wichtige Rolle.

Pyramidenzellen sind die zentralen Nervenzellen in der Großhirnrinde. Während der Embryonalentwicklung klettern die Vorläufer der Pyramidenzellen an den Ausläufern sogenannter Gliazellen entlang. Dabei müssen sie von ihrem Ursprungsort an die Oberfläche der Großhirnrinde gelangen. Sobald die Zellen in der ihnen zugedachten Schicht angekommen sind, entwickeln sie sich zu fertigen Pyramidenzellen und verknüpfen sich zu einem funktionellen Netzwerk. Die Pyramidenzellen breiten sich auch in begrenztem Umfang innerhalb dieser Schichten aus – die Bedeutung dieser tangentialen Wanderung ist bisher noch wenig erforscht.

Die Wanderung der Pyramidenzellvorläufer wird von den FLRTs (Fibronektin-Leucin-reichen Transmembranproteinen) auf der Oberfläche der Vorläuferzellen gesteuert. Zusammen mit dem Rezeptor Unc5 bilden sie eine Gruppe von Leitproteinen mit gegensätzlicher Wirkung auf die Zellwanderung. Einerseits wirken sie abstoßend. Dies ist der Fall, wenn auf der Oberfläche der Vorläuferzelle ein FLRT-Molekül an einen Unc5-Rezeptor bindet. „Während der radialen Wanderung erhält die Vorläuferzelle so das Signal mit der angepassten Geschwindigkeit weiterzuwandern und nicht frühzeitig in äußere Schichten einzuwandern“, erklärt Rüdiger Klein vom Max-Planck-Institut für Neurobiologie in Martinsried, München.

Binden jedoch zwei gleiche FLRT-Moleküle aneinander, löst dies ein anziehendes Signal aus. Die Ergebnisse der Wissenschaftler belegen, dass sich die Vorläuferzellen während ihrer tangentialen Ausbreitung an diesen positiven Signalen orientieren. Sie erhalten so Signale in ihrer Zielschicht zu bleiben. Auf der Oberfläche der Pyramidenzellvorläufer gibt es also Proteine mit anziehender und abstoßender Wirkung. „Die Zellen müssen diese gegensätzlichen Signale miteinander verrechnen und können so durch das Gehirngewebe navigieren. Während der radialen Wanderung überwiegt die Abstoßung, bei der tangentialen die Anziehung der FLRT-Proteine“, sagt Klein.

In ihrer Studie haben die Wissenschaftler zudem die Oberflächenstruktur der FLRT-Proteine mithilfe von Röntgenstrukturanalysen untersucht. Dadurch konnten sie zeigen, dass die richtige Balance dieser Signale auch für die Wanderung anderer Zelltypen wichtig ist: Die Zellen in den Wänden von Blutgefäßen der Retina im Auge und der Nabelschnur werden ebenfalls von einem Zusammenspiel aus anziehenden und abstoßenden Signalen der FLRT- und Unc5-Proteine gesteuert.

Max-Planck-Gesellschaft, 22 Oktober 2014

 

Originalpublikation:
Elena Seiradake, Daniel del Toro, Daniel Nagel, Florian Cop, Ricarda Härtl, Tobias Ruff, Gönül Seyit-Bremer, Karl Harlos, Ellen Clare Border, Amparo Acker-Palmer, E.Yvonne Jones, Rüdiger Klein. FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron, 23 October 2014. DOI: 10.1016/j.neuron.2014.10.008

Kommentare sind geschlossen.